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J. Phys. A: Math. Gen. 15 (1982) 3425-3437. Printed in Great Britain 

On the general structure of nonlinear evolution equations 
and their Backlund transformations connected with the 
matrix non-stationary Schrodinger spectral problem 

B G Konopelchenko 
Institute of Nuclear Physics, Novosibirsk-90, 630090, USSR 

Received 6 April 1982 

Abstract. The general form of nonlinear evolution equations in 1 t 2 dimensions integrable 
by the matrix non-stationary Schrodinger spectral problem is found. The infinite- 
dimensional group of Backlund transformations for these equations is constructed and 
the nonlinear superposition principle is obtained. 

1. Introduction 

One of the main problems of the inverse scattering transform (IST) method is that of 
the description of the equations integrable by this method (see e.g. Zakharov et af 
1980, Bullough and Caudrey 1980). In Ablowitz et a1 (1974, to be referred to as 
AKNS) the very simple and convenient description of the class of partial differential 
equations integrable by the second-order problem (*) a+b/ax = AA$ +p(x, t)4 has been 
given. Then this approach (the AKNS approach) was generalised to the problem 
(*) of arbitrary order (Miodek 1978, Newel1 1979, Kulish 1980, Konopelchenko 
1980a, b, c, 1981a, b) and to some other one-dimensional spectral problems, Konopel- 
chenko 1981c, d, Gerdjikov er al 1980). The infinite-dimensional groups of Backlund 
transformations for these classes of integrable equations have been also found (Calogero 
and Degasperis 1976,1977, Gerdjikov et a1 1980, Konopelchenko 1980a, b, c, 1981a, 

The generalisation of the AKNS approach to the two-dimensional arbitrary-order 
spectral problem at+b/ax +Aa+/ay +p(x, y ,  t)ll/ = 0 where A is a diagonalisable matrix 
has recently been done by Konopelchenko (1981d). In Konopelchenko (1981d) the 
general form of the integrable equations in 1 + 2 dimensions (one time and two spatial 
dimensions) and their Backlund transformations were obtained. 

In the present paper we consider the two-dimensional matrix spectral problem 

b, c, 4. 

a4 a2* 
ay  ax 

a-+,+ V(x,  y ,  f)4 = 0 

where a is an arbitrary constant, the potential U(x, y, t )  is an N x N matrix and 
V(x,  y, t)  + 0 ( J x z  + y 2 +  CO). The order, N, of the matrix V(x, y, t )  is arbitrary. The 
spectral problem (1. l), i.e. the non-stationary Schrodinger spectral problem is well 
known. In the scalar case (N = 1) it was used for integration of the Kadomtsev- 
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Petviashvili equation (Zakharov and Shabat 1974, Dryuma 1974, Zakharov and 
Manakov 1979, Zakharov 1980, Manakov 1981). 

In this paper we find the general form of the nonlinear evolution equations in 
1 + 2 dimensions integrable by (1.1). We construct the infinite-dimensional group of 
Backlund transformations for these equations. We also obtain the nonlinear superposi- 
tion formula for the simplest Backlund transformation. 

The paper is organised as follows. In § 2 we introduce some special solutions of 
the linear problem equivalent to ( l . l ) ,  the scattering matrix, and obtain several 
important relations. In 0 3 we calculate the recursion operators ATn) and ATnl which 
play a fundamental role in our constructions. The general form of the integrable 
equations and Backlund transformations is found in 8 4. In § 5 we consider the simplest 
Backlund transformation and obtain the nonlinear superposition formulae. 

2. Some preliminary relations 

First of all let us note that the non-stationary Schrodinger problem (1.1) is equivalent 
to the 2N-order linear problem 

where IN is an identical N x N matrix and 0 denotes an N x N matrix with zero 
elements. 

Together with the problem (2.1) one must also consider the adjoint problem 

It is more convenient, for our purposes, to consider the problems (2.1) and (2.2) 
than the initial problem (1.1) and its adjoint problem -aa$/ay +a2$/ax2+ 
$u(x, y, t )  = 0. 

Let us introduce, following from Zakharov (1980), Bullough and Caudrey (1980) 
and Konopelchenko (1981d), the matrix solutions l? (x, y, t )  and 8, ( x ,  y, t )  of the 
problem (2.1) given by their asymptotic behaviour 

E: ( x ,  y, t )  - ( 2 ~ i ) - ” ~ 9  ( A )  exp(A 2y - i&Aax) 
x + + m  

(2.3) 
( x ,  y, t )  - (27ri)-”%(A) exp(A2y -i&Aax) 

x+-m 

where A is a complex number, 
- 

Note that 
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The scattering matrix $(i, A, t )  is defined as follows (Zakharov 1980, Bullough and 
Caudrey 1980, Konopelchenko 1981d) 

Correspondingly for the adjoint problem (2.2) we introduce the matrix solutions 
fi: (x, Y, t )  and fi, (x, Y, t )  

fi: (x, y, t )  - (27ri)-’” exp(-A ’y + i t /&n)9- ’ (A)  

(x, y, t )  - (2~ri)-’’~ exp(-A’y +i&Avx)9-’(A) 

x++m 

(2.5) 

x-t-m 

and the scattering matrix s’(i, A, t ) :  
+m 

P: (x, y, t )  = I, d;s’(A, i, t)& (x, y, t ) .  

One can show with the use of (2.1)-(2.6) that the following relations hold 
+m 

dy fi,.? (x, y, t)E: (x, y, t )  = S (i - A )  J-, 
J-a 

+m 

d(A2) fi: (x, y, t)fi: (x, Y’, t )  =S(Y’-Y) 

+ m  

dpS(i,p,r)SI(p,A, t ) = S ( i - A )  

(2.7) 

where S(A) is the Dirac delta function. 
We assume that the potential U(x, y, t )  decreases as Jx2+yZ+ 00 so fast that all 

the integrals which will appear in our calculations exist and that jTz dy a(. . . ) / ay  = 0. 
Now, let 

be two different potentials and E’, E’, P+’, $, 3’ be corresponding solutions and 
scattering matrices of the problems (2.1) and (2.2). One can prove (analogously to 
Konopelchenko (198 Id)) the following important relation 

$’(A: A, t )  -$(i, A,  t )  = - 
+m +m 

dp $(i, p, t )  dx dy fi: (x, y, t )  
-m I, 

x (PYX, Y, t )  -P(x ,  Y, mf (x, Y, t) .  (2.8) 

The mapping U(x, y, t )  + $(i, A, t )  given by the spectral problem (2.1) and formula 
(2.8) establishes a correspondence between the transformations Tu : U + U’ on the 
manifold of potentials {U(x,  y, t ) ,  U(x, y, t ) +  0, d x 2 + y 2 +  CO} and the transforma- 
tions T, : ŝ  + g’ on the manifold of scattering matrices {g(i, A, t )} .  

Let us consider only transformations T such that 

g(i, A, t )  A S^’( i ,  A, t )  = B - ’ ( i ,  t )g ( i ,  A, t)C(A, t )  (2.9) 
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where 

and B1(AZ, t ) ,  B2(A2, r), C1(A2,t), C2(A2, t )  are arbitrary matrices of the order N .  
These ‘restricted’ transformations of the form (2.9) are, as we shall see, wide enough. 

It is not difficult to show that the following identity holds 
+m 

dpSI(A:p,t)(l--B(p, f ) ) g ‘ ( p , h ,  t ) + ( l - B ( A ,  t ) ) s ( i - A )  

(2.10) 

where 

o u  
”=io 0 )  

and 

Bl(alaY9 t ) ,  -.(alay)B*(alaY, t )  

Bl(a/ay, t )  

Combining the relations (2.8), (2.9) and taking into account the identity (2.10) we 
find 

+m 

kr? (x, y ,  ?)E( $, t)P‘(x, y ,  t)l”:’ (x, y ,  t )  

- P ( x ,  y ,  ?)E(&, t)”:’ (x, y ,  r ) ]  = 0.  
F 

Here and in what follows for an arbitrary 2N x 2N matrix 

43 4 4  

where 41, 42,43,44 are N x N matrices, the quantity 4 . ~  means 

(2.11) 

The matrices Bl(a/ay, t )  and Bz(a/ay, t )  which are contained in formula (2.11) can 
be represented by the form B~(a/dy ,  t )  = X:t1 Bl,(d/ay, t)H, and Bz(a/ay, t )  = 
E,=, BZv(a/ay, t )H,  where matrices H y  (y = 1, . . . , N z )  form a basis for the full linear N 2  
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matrix algebragl(N, C) andBly(a/ay, t),B2,(8/ay, t )  are some functions. In the present 
paper we shall consider only the functions Bly(a/ay, t), B2,(a/ay, t)  entire on the first 

where bl , ( , ) ( t )  and b2,(,,)(t) are arbitrary functions. For such functions Bl,(a/ay, t) 
and Bz,(a/ay, t ) ,  the equality (2.11) can be rewritten as follows 

m CO 
argument, i.e. Bly(a/ay, t )  = En=, bl,(n)(t)a"/ay",  ala^, t )  =E,=, b2,,,,(t)a"/a~" 

where Tr denotes the usual matrix trace and 

(2.13) 

i , k , I , m = l ,  . . . ,  N ; n  = 0 ,  1 , 2 , . .  , 

where we represent the 2N x 2N matrices fi+' and p' in the block form 

3. Recursion operators 

For further transformation of the equality (2 .12)  one must establish the relations 
between the quantities den) and x(,,) with different n. 

Let us introduce, in addition to &) and f (" ) ,  the quantities 

(3 .1)  

With the use of (2 .1) ,  (2 .2 )  and definitions (2.13),  (3 .1)  we obtain the following system 
of equations 

A 

( 3 . 2 ~ )  -- ad?- i(") 4(") 

-- "(n)- -ad(n+t)-gz(n)- c L u : n - m ) f ( m )  

ax 

(3 .26 )  ax m=O 

( 3 . 2 ~ )  

n 

- C L U [ n - m $ 1 ( m )  n = 0 , 1 , 2 ,  . . .  
m=O 

( 3 . 2 d )  
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where 

n !  def akU(x, y, t )  
ay 

c; = and U(k) = m!(n -m)! 

Differentiaiing the equation ( 3 . 2 ~ )  over x and using (3.26), ( 3 . 2 ~ )  one can express 
2 2 ( , , )  through dim) (m = 0, 1, . . . , n + 1). Substitution of the expressions obtained into 
equations (3.2b) and ( 3 . 2 4  and the use of the equalities d:Fj) (x =+CO, y, t ) =  
2:;; (+CO, y, t )  = 2::;) (+CO, y, t )  =pi::) (+CO, y, t )  = o give 

and 

where 

and the operator acts as follows 

(AX'q5 +A+(U'~~))-~-'(LZ+~!J - U'q5)U- U'K'(Yq5 -q5U)]. 
1 - - 1  A(l)4 =--a '[a 

4a 
(3.5) 

From (3.4) it follows that there exist operators such that 

6;;; = & n ) 6  $/ n = 1 , 2 , 3  , . . . .  (3.6) 
These operators &,) are determined from the following recursion relations 

i(n)4 = &l)&n-1)4 

n = 2 , 3 , .  . . (3.7) 
where the operator &I ,  is given by (3.5). In virtue of (3.6) the relation (3.3) is 

By analogous calculations one can show that 

dKj = i,n,4:&) n = 1 , 2 , 3 , .  . . 

(3.8) 

(3.9) 
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and 

The recursion operators &,,I are found from the recursion relations 

& n ) 4  = A(l)&n-I)# 

n = 2 , 3 , .  . . 
where = 1 and 

3431 

(3.10) 

(3.11) 

1 - -1 kcl,4 =4aa '[a ( A + F ~  - A - ( ~ u ) ) +  u f a - W f 4  --#u)+a-'(3+4 - u'4) VI. 

(3.12) 

The operators A(,,) and A(,,) are not independent. From their definitions it follows 
that for example 

(3.13) 

In the following constructions we shall use the operators A:,) and A&) adjoint to 
the operators and A(,,) with respect to bilinear forms 

def (x, $) = dx dy TrCv(x, y)$(x, y) ) .  
-m 

The corresponding recursion relations for the operators ATfl) are of the form 

n = 2 , 3 , .  . . 
where the operator A& acts as follows 

1 -  A&+ = -4,[a 'A%'+ + UA+X24 +(A-av24) U ' + A + a - ' ( U  a - l d )  

+ A-a-'(a-'d U ' )  - ua-'(a-'4 U' - U a-lb) 
+a-'(a-'4 U' - u a - ' 4 )  U'].  

In formulae (3.14), (3.15) and below (a-'f)(x, y )  = {:-dx' f(x', y) .  

(3.14) 

(3.15) 
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The operators A&) can be found from the recursion relations analogous to (3.14) 
or from the relations 

(3.16) 

4. General structure of the integrable equations and Backlund transformations 

The existence of the recursion operators A(,,) and A(,,) is extremely important for the 
generalisation of the AKNS method to the two-dimensional problem (3.1). With the 
use of the relations (3.3), (3.6), (3.8), (3.9), from (2.12) we obtain 

J-w y = l  n = o  L 

- m i = O  c ~ A ; m ) ( ~ ~ n - m ) H y a - l u ' ) ) ] ]  = 0 

where operators A&) and ATn, are given by formulae (3,14)-(3.16). 
The equality (4.1) is fulfilled if 

(4.1) 

If the quantities c$i;/(x, y, t )  form a complete set (similar to the one-dimensional 
case W / a y  = 0) then the equality (4.2) is also a necessary condition of fulfilment of 
the equality (4.1). 

The relation (4.2) just determines the transformation of the potential U(x,  y, t )  + 

U'(x, y, t )  which corresponds to the transformation of the scattering matrix $6, A,  t )  + 
$'(A: A ,  t )  of the form (2.9). It is important that the relation (4.2) contains only the 
potential U and transformed potential U'. 

The transformations (4.2) form, as it is easy to see from (2.9), an infinite- 
dimensional group. This group of transformations which acts on the manifold of the 
potentials {U(x,  y, I)} by the formula (4.2) and on the manifold of the scattering 
matrices {$(i, A, t ) }  by the formula (2.9) plays a fundamental role in the analysis of 
the nonlinear systems connected with the problem (2.1) (or (1.1)) and their properties. 
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Let us consider the transformation (2.9), (4.2) generated by the infinitesimal 
displacement in time t : t + t' = r + E ,  E + 0. For this transformation 

(4.3) 
B1= C1 IN, B2,(A2, t)=CZV(A2, t ) = - - E f l y ( A 2 ,  t )  y =  1,. . . , N 2  

2 where &,(A , t )  = Z:=o wyn(f )Azn and w y n ( t )  are arbitrary functions. Substituting 
(4.3) into (4.2) and keeping the terms of first order in E we obtain an evolution equation 

(4.4) 

LL) Zf A&)(U' = U ) ,  it, Zf ATn)( U' = U )  

The operators LL) and I$,) are calculated from the recursion relations (3.14) and 
from (3.16) at U ' =  U. For example 

def 
and i;) = --& - a /ay  where [A, B]* = A B  *BA.  

evolution equation 
For the scattering matrix from (2.9) we correspondingly obtain the following linear 

dSl(i' A' ' ) =  Y ( i ,  t ) s ( i ,  A ,  t ) - $ ( i ,  A, t)Y(A, t )  
dt 

where 

(4.6) 

(4.7) 
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Thus the nonlinear evolution equations (4.4) are infinitesimal forms of the transfor- 
mations (4.2) generated by time displacement. The class of equations (4.4) is charac- 
terised by the integer N, recursion operators i tn, ,  i tn ,  and by N 2  arbitrary functions 
n l (h2 ,  t ) ,  . . . , n N 2 ( h 2 ,  t )  entire on h 2 .  

The equations (4.4) are just the nonlinear evolution equations in 1 + 2 dimensions 
(one time and two spatial) integrable by the IST method with help of the linear problem 
(1.1) (or (2.1)). Using the two-dimensional version of the IST method (see e.g. 
Zakharov et a1 1980, Zakharov and Shabat 1974, Zakharov and Manakov 1978, 
Zakharov 1980) one can, in principle, find a broad class of exact solutions of equation 
(4.4). Let us note that the evolution law of the scattering matrix of the type (4.7) 
was earlier considered in Zakharov and Manakov 1978, Zakharov 1980. 

The simplest equation of the form (4.4) which corresponds to 

where w o ( t )  and wl( t )  are scalar functions and w y 2  = w y 3  = . . . = 0 ( y  = 1, . , N 2 )  is 

(4.8) 

In the scalar case (N = 1) and constant wo, w1 = -4a equation (4.8) is the well known 
Kadomtsev-Petviashvili (KP) equation considered in Zakharov and Shabat (1974), 
Dryuma (1974), Zakharov and Manakov (1979), Manakov (1981). At arbitrary N it 
is the matrix KP equation which was discussed (see e.g. Chudnovsky 1980). The KP 
equation (4.8) is the lowest (KP1) form of the infinite family (KP family) of the 1 + 2 
dimensional equations (4.4) (KP,: x y = l  H , m y o = w o I ~ ,  z7=l H,uyn = - a2  IN, w,1= 
wy2  = . . . = wyn-l = w ~ ~ + ~  = , . . = 0, n = 1 , 2 , 3 , .  . , ). 

In the one-dimensional case aU/ay = 0, the equations (4.4) coincide with those 
integrable by the matrix stationary Schrodinger spectral problem (Calogero and 
Degasperis 1977). 

N 2  N 2  2 n  

5. The Backlund transformation group and nonlinear superposition principle 

The infinite-dimensional group of transformations (4.2) contains all transformations 
specific to the integrable equations (4.4). 

Let us consider transformations (4.2) with matrices B and C commuting with the 
matrix Y ( h ,  t) ,  (4.7). At aBl/at = aB2/at = aCl/at = aC2/at = 0 these transformations 
do not change the evolution law (4.6) of the scattering matrix and, therefore, they 
are auto Backlund transformations (BT) for the equations (4.4): they transform sol- 
utions of the definite equations of the form (4.4) into the solutions of the same 
equation. If aBl/at # 0, aB2/at # 0 then the transformations (4.2) are generalised BT. 
The infinite-dimensional group of transformations (4.2) also contains, as a subgroup, 
an infinite-dimensional symmetry group of the equations (4.4). Group theoretical 
structure of these equations will be considered elsewhere. 
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Let us consider the simplest BT (4.2) which corresponds to 
N 2  N *  

,=l ,=l 
c H&2,(0) = b2l;u H$ly(O) = bl lN,  

and blY(")  = b2,,(") = 0 (n = 1,2 , .  . . ) where b1 and b2 are arbitrary constants. This BT 
Bb iS 

where b = 2bl/b2. Introducing the potential W(x, y, t) by V(x, y, t )  = aW(x, y, t)/ax 
(W(-oo, y, t )  = 0) we obtain a local form of BT (5.1): 

+(W'-  W)--- aw' aw(w'-w)=o. 
ax ax 

Let us note that BT (5.2) is universal i.e. it is a BT for any equation of the form 
(4.4) and in particular for any equation from the KP family. 

BT (5.2) allows us to construct an infinite family of the solutions of the equations 
(4.4) by almost pure algebraic operations. Indeed let us consider the following diagram 

which expresses the commutativity of BT (5.2) with different parameters b :  BblBbz = 
Here Vi = aWi/ax (i = 0,1,2,3)  are four solutions of the definite (but any) 

equation of the form (4.4). With the use of the equation (5.2) for all four solutions 
WO, W1, W2, W3; from (5.3) we obtain 

W3 (b  1 - 62 + W1- Wz)-'[(bi - b2)( Wi + W, - WO) 

- WO( w1 - w,) + 2a(w1 - w2)/ax + w: - w91. (5.4) 
Therefore with the three solutions given, WO, W1, W2, one can easily calculate the 
fourth solution W3 from (5.4). Let us emphasise that the relation (5.4) is a universal 
one, i.e. it is valid for all the equations of the form (4.4) and in particular for any 
equation from the KP family. 

The relation (5.4) is just the nonlinear superposition principle for the equations 
(4.4). ,Some concrete nonlinear superposition formulae for some concrete 1 + 1 
dimensional equations are well known (see e.g. Miura 1976). 

Starting from the trivial solution WO = 0 and using the simplest one-soliton solutions 
WI and W2 (they differ only by the value of the constant 6 )  one can easily obtain 
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with the use of (5.4) the infinite family of 
of the form (4.4). 

In the scalar case (N  = 1) the BT (5.2) 
reduce to 

the soliton-type solutions of the equations 

and nonlinear superposition formula (5.4) 

6 ( W ’ - W ) + - ( W ’ c W ) - n ~ x  a dx’ - (W‘(x ’ ,y ) -W(x’ ,y ) )+ i (W’-  a W ) 2 = 0  
ax -- ay  

(5.5) 

and 

(5.6) 
a 

ax 
W3= W1+ W2- Wo+2-ln(bl-b2+ W1- W2) 

which coincide at b = 0 with those found earlier by another method in Chen (1975). 
In Chen (1975) the solutions W1, W2 were calculated with the use of BT (5.5) (at 
N = 1 , 6  = 0). 

In the scalar case ( N  = 1) one can also obtain from (5.3) the other nonlinear 
superposition formula for BT (5.5). It is 

which at a W/ay = 0 reduces to the well known superposition formula for the KDV 
family of equations (see e.g. Miura 1976). 

In the one-dimensional case aU/ay = 0 the general BT (4.2) coincide with those 
connected with the stationary matrix Schrodinger spectral problem (Calogero and 
Degasperis 1977). 

6 .  Conclusion 

In the conclusion we emphasise the following points. 
(i) All the results of the present paper can be generalised to the case when 

lim+?,, U(x,  y, t )  # 0. In particular, the equation (4.8), BT (5.2) and superposition 
formula (5.4) remain unchanged. 

(ii) Let us emphasise that in the present paper we consider another direct scattering 
problem for the spectral problem (1.1) (or (2.1)) than in Zakharov and Manakov 
(1979), Manakov (1981). Namely, in our approach the scattering matrix S, in essence, 
relates the asymptotics of the solutions 4 of the problem (1.1) on x infinities, i.e. at 
x = --CO and x = +-CO, while in Zakharov and Manakov (1979) and Manakov (1981) 
the standard version of the scattering problem for the non-stationary Schrodinger 
equation (1.1) is used in which the scattering matrix connects the solutions on y 
infinities, i.e. at y = --03 and y = +W. The interrelation between these two approaches 
will be considered elsewhere. 

(iii) One can try to transfer the 1 + 2  dimensional AKNS technique to other two- 
dimensional spectral problems. In particular, to 
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and 

where U, Q and R are N x N matrices and a and /3 are arbitrary constants. For the 
one-dimensional counterparts of the problems (6.1) and (6.2) (i.e. at aU/ay = 0, 
aQ/ay = aR/ay = 0 and a$/ay = A$) it is possible to calculate the recursion operators, 
to find the general form of the integrable equations and their Backlund transformations 
and so on (for problem (6.1) see Calogero and Degasperis (1977), for problem (6.2) 
see Konopelchenko (1981~)). For the two-dimensional problems (6.1) and (6.2) one 
can obtain all the formulae analogous to those given in § 2. But the recursion operators 
analogous to A(,,) and A(,,) do not exist for the problems (6.1) and (6.2). Namely, 
instead of the relations (3.6) and (3.9) we obtain the relations of the type 

C::)) = ho(n)'P{g)) +hl(n)CIf;) 
Q ( n )  - Ao(n,d&) +A1(n)dK! n =2,3 ,4 , .  . . (F) - *I 

where hO(,,), and io(,,,), Al(,,) are operators which can be calculated by certain 
recursion relations. So, the two-dimensional spectral problems (6.1) and (6.2) essen- 
tially differ from the problem (1.1) and the problem a$/& +Aa$/ay +P(x ,  y, t )$  = 0 
(Konopelchenko 198 Id) from the AKNS-teChniqUe point of view. 
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